Jikakalian tertarik, yuk klik video di bawah ini: Semoga contoh soal persamaan linear dua variabel spldv dengan kunci jawaban dan pembahasan ini bermanfaat untuk adik adik khususnya yang sudah kelas 8 sekolah menengah pertama smp sltp mts. Contoh soal dan pembahasan sistem persamaan linear dua variabel (spldv) dan aritmatika sosial widi
Sistempersamaan kuadrat dan kuadrat atau disingkat dengan SPKK merupakan sistem persamaan yang terdiri atas dua persamaan kuadrat yang masing-masing memuat dua variabel. Untuk sistem persamaan linear dan linear dua variabel tidak kita bahas karena sudah dibahas pada materi program linear beserta dengan soal ceritanya.
Vay Tiền Nhanh Chỉ Cần Cmnd. Contoh soal dan pembahasan sistem persamaan linear dan kuadrat materi matematika kelas 10 SMA. Persamaan linier dua variabel x dan y digabungkan dengan persamaan yang mengandung x2 atau y2 SPLK dan SPLDV. Soal No. 1 Diberikan dua buah persamaan yaitu persamaan linear dua variable dan kuadrat sebagai berikut i y = 2x + 3 ii y = x2 − 4x + 8 Tentukan himpunan penyelesaian Hp dari kedua persamaan tersebut di atas! Pembahasan Substitusikan y dari persamaan i ke y pada persamaan ii, atau sebaliknya dari ii ke i, lanjutkan dengan operasi aljabar. x2 − 4x + 8 = 2x + 3 x2 − 4x + 8 − 2x − 3 = 0 x2 − 6x + 5 = 0 Berikutnya faktorkan x2 − 6x + 5 = 0 x − 1x − 5 = 0 Dapatkan nilai x yang pertama x − 1 = 0 x = 1 Dapatkan nilai x yang kedua x − 5 = 0 x = 5 Berikutnya mencari nilai-nilai dari y dengan substitusi nilai x ke persamaan i Untuk x = 1 maka y = 2x + 3 y = 21 + 3 y = 2 + 3 y = 5 Dari sini didapatkan pasangan x, y yaitu 1, 5 Untuk x = 5 maka y = 2x + 3 y = 25 + 3 y = 10 + 3 y = 13 Dari sini didapatkan pasangan x, y yaitu 5, 13 Sehingga himpunan penyelesaiannya Hp {1, 5, 5, 13} Jika lupa bagaimana cara memfaktorkan, bisa dibaca lagi. Soal No. 2 Diberikan dua buah persamaan sebagai berikut i y = 5x + 4 ii y = x2 + 13x − 16 Pembahasan x2 + 13x − 16 = 5x + 4 x2 + 13x − 16 − 5x − 4 = 0 x2 + 8x − 20 = 0 x + 10x − 2 = 0 Nilai x yang pertama x + 10 = 0 x = − 10 Nilai x yang kedua x − 2 = 0 x = 2 Nilai-nilai y, dari persamaan pertama Untuk x = − 10 didapat nilai y y = 5x + 4 y = 5−10 + 4 = − 46 Untuk x = 2, didapat nilai y y = 5x + 4 y = 52 + 4 = 14 Hp {− 10, − 46, 2, 14} Bagaimana jika SPLK bagian kuadratnya mengandung bentuk implisit yang dapat difaktorkan? Seperti contoh berikutnya. Soal No. 3 Diberikan dua buah persamaan sebagai berikut i x − y = 5 ii x2 − 6yx + 9y2 − 9 = 0 Tentukan himpunan penyelesaian dari persamaan-persamaan di atas! Pembahasan i x − y = 5 ii x2 − 6yx + 9y2 − 9 = 0 Terlebih dahulu faktorkan persamaan kuadratnya, ada beberapa cara untuk memfaktorkan bentuk “kuadrat dalam kuadrat” seperti bentuk di atas, salah satunya sebagai berikut Ingat kembali bentuk ax2 + bc + c = 0 . Jika diterapkan pada persamaan ii maka didapat nilai a, b dan c sebagai berikut x2 − 6yx + 9y2 − 9 = 0 a = 1 b = − 6y c = 9y2 − 9 Sehingga x2 − 6yx + 9y2 − 9 = 0 x − 3y − 3x − 3y + 3 = 0 Dari pemfaktoran ini kita dapat dua persamaan baru yaitu x − 3y − 3 = 0 …..iii x − 3y + 3 = 0 …..iv Dari persamaan ii dan iii x − y = 5 x − 3y = 3 _________ _ 2y = 2 y = 1 x − y = 5 x − 1 = 5 x = 6 Dari persamaan ii dan iv x − y = 5 x − 3y = − 3 ___________ _ 2y = 8 y = 4 x − y = 5 x − 4 = 5 x = 9 Sehingga penyelesaiannya adalah {6, 1, 9, 4}
Materi Sistem Persamaan Linier Kuadrat Dua Variabel biasanya akan kalian dapatkan di bangku SMA, tepatnya saat kalian berada di kelas ini merupakan penjabaran lanjutan dari persamaan linear kuadrat. Berikut akan kami berikan ulasan selengkpanya mengenai Sistem Persamaan Linier Kuadrat Dua Variabel, simak baik-baik Persamaan Linear dan Kuadrat Dua Variabel SPLKDVCara Penyelesaian SPLKDVCara Penyelesaian SPKSistem Persamaan Linear dan Kuadrat Dua Variabel SPLKDVBanyak persoalan pada bidang sains, bisnis, dan juga teknik yang melibatkan dua atau lebih persamaan dalam dua atau lebih dalam menyelesaikan persoalan tesebut ini, kita harus menemukan solusinya dengan menggunakan sistem untuk SPLDKV sendiri memiliki bentuk umum seperti berikut iniy = ax + b bentuk linear y = px2 + qx + r bentuk kuadratKeteranganDengan a, b, p, q, r merupakan bilangan Penyelesaian SPLKDVBerikut adalah tahapan atau langkah-langkah dalam menyelesaikan persoalan SPLKDV, diantaranya ialah sebagai berikutSubtitusikan y = ax+b menjadi y = px2 + qx + r sehingga akan terbentuk persamaan akar-akar persamaan kuadrat yang terbentuk yaitu x1 dan x1 dan juga x2 ke dalam bentuk persamaan bentuk linear untuk memperoleh y1 dan penyelesaiannya yaitu {x1,y1,x2,y2}.Himpunan penyelesaian antara persamaan bentuk linear dengan bentuk kuadrat mempunyai tiga kemungkinan, diantaranya yaituApabila D>0, maka garis serta parabola berpotongan di dua titik yang di mana adalah himpunan D = 0, maka garis serta parabola berpotongan di satu titik yang di mana adalah himpunan D -x2 + 5x – 6 = 0 x2 – 5x + 6 = 0 x – 3x – 2 = 0 x1 = 3 atau x2 = 2Untuk x1 = 3 maka y1 = 3 – 3 = 0Untuk x2 = 2 maka y2 = 2 – 3 = -1Sehingga, himpunan penyelesaiannya yaitu {2,-1,3,0}Maka jawaban yang paling tepat adalah A2. Sistem Persamaan Kuadrat SPKSistem persamaan kuadrat dengan variabel x serta y pada umumnya dinyatakan seperti berikut iniy = ax2 + bx + c y = px2 + qx + rKeteranganDengan a, b, p, q, r merupakan bilangan Penyelesaian SPKSubstitusikan persamaan yang satu ke dalam persamaan yang lainnya sehingga akan membentuk persamaan akar-akar persamaan kuadrat yang terbentuk sehingga akan kita dapatkan himpunan penyelesaiannya, yaitu {x1,y1,x2,y2}Himpunan penyelesaian dari sistem persamaan kuadrat mempunyai 6 kemungkinan, diantaranya yaituApabila D > 0, maka kedua parabola akan berpotongan di dua titik yang di mana adalah himpunan D = 0, maka kedua parabola akan berpotongan di satu titik yang di mana adalah himpunan penyelesaiannyaApabila D 2x2 -8 = 0 x2 – 4 = 0 x – 2x + 2 = 0 x = 2 atau x = -2Untuk x = 2 y = x2 – 2x – 3 y = 22 -2 2 – 3 y = 4 – 4 – 3 y = -3Untuk x = -2 y = x2 – 2x – 3 y = -22 -2 -2 – 3 y = 4 + 4 – 3 y = 5Maka dari itu, himpunan penyelesaiannya dari soal di atas adalah {-2,5,2,-3}Sehingga jawaban yang paling tepat adalah jugaSistem Persamaan Linear Dua Variabel SPLDVSistem Persamaan Linear Tiga Variabel SPLTVSistem Persamaan LinearDemikianlah ulasan singkat terkait Sistem Persamaan Linier Kuadrat Dua Variabel yang dapat kami sampaikan. Semoga ulasan di atas dapat kalian jadikan sebagai bahan belajar kalian.
2 tahun lalu Real Time3menit Hiii Gengs Pada kesempatan kali ini saya akan memposting tentang “SPL Dua Variabel – Soal dan Jawaban Pilihan Ganda Kelas 10” Berikut ini saya sediakan 12 nomor soal tentang sistem persamaan linear dua variabel NOMOR 1Jika x=-4 maka nilai y dari persamaan -2x+3y=20 adalah… + 3y = 203y = 20 – 83y = 12y=4 NOMOR 2Nilai x dan y yang memenuhi persamaan 3x-2y=-4 dan x+2y=-4 adalah…a. x=-2, y=-1b. x=-2, y=1c. x=-1, y=2d. x=2, y=1e. x=3, y=2JawabanaCARA 3x-2y=-4x+2y=-4____________ +4x = -8x = -2x+2y=-4-2 + 2y = -42y=-4+22y=-2y=-1 NOMOR 3Sistem persamaan x+y=3 dan 2x+3y=7 memilk penyelesaian…a. Terhinggab. Tepat dua anggotac. Tepat satu anggotad. Tidak punya anggotae. Semua benarJawabanb CARAx+y=3 x32x+3y=7 x13x+3y=92x+3y=7____________ –x = 2x+y=32+y=3y=1Dari penyelesaian di atas kita peroleh tepat dua anggota penyelesaian. Pelajari Juga NOMOR 4Himpunan penyelesaian dari sistem persamaan x+4y=17 dan 2x+y=20 adalah…a. {-6,2} b. {-2,6} c. {-2,9} d. {6,2} e. {9,2} Jawabane CARA x+4y=17 x1 2x+y=20 x4x+4y=178x+4y=80______________ –-7x = -63x=9x+4y=179 + 4y = 174y = 8y=2 NOMOR 5Jika x dan y memenuhi sistem persamaan linear 3x+2y=15 dan 2x+y=9, maka nilai 4x-y =…a. 12 b. 9 c. 6 d. 3 e. 0JawabanbCARA3x+2y=15 x12x+y=9 x23x+2y=154x+2y=18______________ –-x=-3x=32x+y=923 + y = 96+y=9y=3Dengan demikian4x-y = 43 – 3 = 12-3 = 9 NOMOR 6Jika x dan y memenuhi sistem persamaan linear 2x-5y=15 dan 3x+4y=11, maka 2x+3y =… b. -2 c. 5 d. 7 e. 9 Jawaban d CARA2x-5y=15 x43x+4y=11 x58x-20y=6015x+20y=55_____________ +23x = 115x=52x-5y=1525 – 5y = 1510-5y = 15-5y=5y=-1Dengan demikian, 2x+3y = 25+3-1 = 10 – 3 =7 NOMOR 7Jika x dan y memenuhi sistem persamaan linear 2x+3y=13 dan 3x+4y=19, maka 2xy=…a. 30 b. 20 c. 10 d. 5 e. 1Jawaban c CARA2x+3y=13 x33x+4y=19 x2 6x+9y=396x+8y=38______________ –y=12x+3y=132x + 31=132x= 10x=5Dengan demikian 2xy= 251=10 NOMOR 8Diberikan sistem persamaan x+2/2 – y+1/3 =2 dan 2x+1/2 – y-5/4=4, maka nilai dari 4x-2y adalah… e NOMOR 9Himpunan penyelesaian dari sistem persamaan 2/x + 3/y=-1/2 dan 1/x – 1/y = -2/3 adalah…a. {-2,-6} b. {2,-6} c. {-2,6} d. {2,6} e. {6,2} Jawaban c CARA2/x+3/y=-1/2 x11/x-1/y=-2/3 x2 2/x+3/y=-1/2 2/x-2/y=-4/3 ________________ –3/y+2/y= -1/2+4/3 5/y=-3+8/6 5/y=5/6 5y=30y=6 2/x+3/y=-1/2 2/x+3/6=-1/2 2/x=-1 x=-2 NOMOR 10Diketahui jumlah 2 bilangan sama dengan 28 dan selisih kedua bilangan itu sama dengan 8. Hasil kali kedua bilangan itu adalah… CARAx+y=28x-y=8___________ – 2y=20y=10x+y=28x+10=28x=18Dengan demikian hasil kali kedua bilangan xy adalah 18 x 10= 180 NOMOR 11Empat tahun yang lalu umur Riza 3 kali umur Ani. Jika 6 tahun mendatang umur Riza 2 kali umur Ani sekarang adalah… tahun tahun tahun tahun tahunJawaban NOMOR 12Tiga baju dan satu celana berharga Sedangkan harga satu baju dan dua celana berharga Harga untuk satu baju dan satu celana adalah….a. b. c. d. e. Jawaban b CARA Misalkan baju=x dan celana=y3x+y=360 x2x+2y=320 x16x+2y=720x+2y=320______________ –5x= 400x =80x+2y=32080 + 2y = 3202y=240x=120Dengan demikian Harga untuk satu baju dan satu celana x+y adalah Rp + Rp = Rp Pelajari Juga Semoga Bermanfaat sheetmath
"MATERI LENGKAP Sistem Persamaan Linear dan Kuadrat". Pada postingan ini, akan dijelaskan cara menyelesaikan soal-soal yang berkaitan dengan sistem persamaan linear. 1. Sistem Persamaan Linear a. Persamaan Linear satu variabel adalah kalimat terbuka yang menyatakan hubungan sama dengan dan hanya memiliki satu variabel berpangkat satu. Benjtuk umum persamaan linear satu variabel adalah ax + b = c, dengan a ≠0 b. Persamaan linear dua veriabel adalah persamaan linear yang mengandung variabel dengan pangkat masing-masing variabel sama dengan satu. Bentuk umum persamaan linear dua variabel ax + by = c, dengan a ≠0 dan b≠0 2. Sistem Persamaan Linear Dua Variabel SPLDV Sistem persamaan linear dua veriabel adalah sistem persamaan yang menandung paling sedikit sepasang dua buah persamaan linear dua vartiabel yang hanya mempunya satu persamaan linear dua variabel dengan variabel x dan y secara umum ditulis sebagai berikut dengan Untuk menyelesaikan sistem persamaan linear dua variabel dapat digunakan metode-metode di bawah ini a. Metode grafrik b. Metode subtitusi c. Metode eliminasi d. Metode eliminasi-subtitusi a. Metode Grafik Metode grafik adalah metode penyelesaian SPLDV yang dilakukan dengan cara menggambar grafik dari kedua persamaan tersebut yang kemudian menentukan titik potongnya. Langkah-langkah menggambar grafik Menggambar grafik masing-masing persamaan pada sebuah bidang Cartesisus dengan menggunakan metode titik potong sumbu Bila kedua garis berpotongan pada sebuah titik maka himpunan penyelesaiannya tepat memiliki sebuah anggota, yaitu {x,y}. Bila kedua garis itu sejajar tidak berpotongan maka himpunan penyelesaiannya tidak memiliki anggota, yaitu {} himpunan kosong Bila kedua garis itu berimpit, maka himpanan penyelesaiannya memiliki anggota yang tak banyak hingganya. Contoh soal EBTANAS 2000 Jika x dan y memenuhi sistem persamaan Nilai x + y sama dengan ..... A. 6 B. 4 C. -2 D. -6 E. -8 Pembahasan Grafik persamaan garis 2x + y = 5 * Titik potong dengan sumbu x, maka y = o 2x + 0 = 5 2x = 5 x = 5/2 Titik potongnya 5/2 , 0 * Titik potong dengan sumbu y, maka x = 0 20 + y = 5 y = 5 Titik potong 0,5 Grafik persamaan garis 3x - 2y = -3 * Titik potong dengan sumbu x, maka y = 0 3x - 20 = -3 x = -1 Titik potong -1,0 * Titik potong dengan sumbu y, maka x = 0 30 - 2y = -3 y = 3/2 Titik potong 0, 3/2 Garis 2x + y = 5 dan garis 3x - 2y = -3 berpotongan di titik 1,3 yang berarti x = 1 dan y = 3. Jadi, x + y = 1 + 3 = 4 -> Jawaban B. 4 b. Metode Subtitusi Metode subtitusi adalah metode penyelesaian SPLDV dengan cara menggantikan satu variabel dengan variabel dari persamaan lain. Langkah-langkah menggunakan metode subtitusi Pilih salah satu persamaan yang paling sederhana kemudian nyatakan x sebagai fungsi y atau y sebegai fungsi x Subtitusikan x atau y pada langkah 1 ke persamaan yang lainnya Contoh Soal Himpunan penyelesaian sistem persamaan adalah . . . . . A. {2,2} B. {2,4} C. {4,2} D. {1,2} E. {2,1} Pembahasan Dari persamaan 4x + y = 12 y = 12 - 4x .......1 Subtitusi persamaan 1 ke persamaan 2x + y = 8, diperoleh 2x + 12 - 4x = 8 2x + 12 - 4x = 8 -2x = 8 - 12 -2x = -4 x = 2 Subtitusi nilai x = 2 ke persamaan 1 diperoleh y = 12 - 42 y = 12 - 8 y = 4 Jadi, himpunan penyelesaiannya adalah {2,4} -> Jawaban B c. Metode Eliminasi Metode eliminasi adalah metode penyelesaian SPLDV dengan cara menghilangkan salah satu variabel. Langkah-langkah menggunakan metode eliminasi 1. Perhatikan koefisien x atau y a. Jika koefisiennya sama i Lakukan operasi pengurangan untuk tanda yang sama ii Lakukan operasi penjumlahan untuk tanda yang berbeda b. Jika koefisiennya berbeda, samakan koefisiennya dengan cara mengalikan persamaan-persamaan dengan konstanta yang sesuai, lalu lakukan operasi penjumlahan atau pengurangan seperti pada langkah sebelumnya. 2. Lakukan kembali langkah 1 untuk mengeliminasi variabel lainnya. Contoh soal Himpunan penyelesaian sistem persamaan adalah { Nilai p - q = ..... A. 0 B. 1 C. -1 D. 2 E. -2 Pembahasan Mengeliminasi variabel x 7x + 5y = 2 x5 35x + 25y = 10 5x + 7y = -2 x7 35x + 49y = -14 - -24y = 24 y = -1 Mengeliminasi variabel y 7x + 5y = 2 x7 49x + 35y = 14 5x + 7y = -2 x5 25x + 35y = -10 - 24x = 24 x = 1 Himpunan penyelesaiannya {p,q} = {-1,1} Nilai p - q = 1-1 = 2 -> Jawaban D d. Metode Eliminasi-Subtritusi Metode eliminasi-subtitusi adalah metode penyelesaian SPLDV dengan cara menggabungkan metode eliminasi dan metode subtitusi. Metode elminasi digunakan untuk mendapatkan variabel pertama dan hasilnya disubtitusikan ke persamaan untuk mendapatkan variabel kedua. Contoh Soal Di sebuah toko, Rabil membeli 4 barang A dan 2 barang B dengan hargar Rp 4000,- Mazlan membeli 10 barang A dan 4 barang B dengan harga Rp Alif ingin membeli sebuah barang A dan sebuah barang B dengan harga.... Pembahasan Misal Barang A = A dan Barang B = B Diketahui Rabil => 4A + 2B = 4000 8A + 4B = 8000 Mazlan => 10A + 4B = 9500 Alif => A + B = .....? Dengan menggunakan eliminasi 8A + 4B = 800010A + 4B = 9500 - -2A = -1500 A = 750 Subtitusi nilai A = 750 ke salah satu persamaan, diperoleh 4750 + 2B = 4000 3000 + 2B = 4000 2B = 1000 B = 500 Maka A + B = 750 + 500 = Jadi, harga sebuah barang A dan sebuah barang B adalah Rp 1. Sistem Persamaan Linear dan Kuadrat Dua Variabel SPLKDV Bentuk umum sistem persamaan linear dan kuadrat dua variabel dengan variabel x dan y adalah dengan a, b, p, q, r adalah bilangan real. Langkah-langkah Menyelesaikan SPLKDV a. Subtitusikan y = ax+b ke y = px2 + qx + r sehingga berbentuk persamaan kuadrat b. Tentukan akar-akar persamaan kuadrat yang terbentuk yakni x1 dan x2 c. Subtitusikan x1 dan x2 ke persamaan bentuk linear untuk mendapatkan y1 dan y2 d. Himpunan penyelesaiannya adalah {x1,y1,x2,y2} Himpunan penyelesaian antara persamaan bentuk linear dan bentuk kuadrat memiliki tiga kemungkinan, yakni Jika D>0, maka garis dan parabola berpotongan di dua titik yang merupakan himpunan penyelesaiannya Jika D = 0, maka garis dan parabola berpotongan di satu titik yang merupakan himpunan penyelesaiannya Jika D -x2 + 5x - 6 = 0 x2 - 5x + 6 = 0 x - 3x - 2 = 0 x1 = 3 atau x2 = 2 Untuk x1 = 3 maka y1 = 3 - 3 = 0 Untuk x2 = 2 maka y2 = 2 - 3 = -1 Jadi, himpunan penyelesaiannya adalah {2,-1,3,0} -> Jawaban A 2. Sistem Persamaan Kuadrat SPK Sistem persamaan kuadrat dengan variabel x dan y secara umum dinyatakan sebagai berikut dengan a, b, c, p, q, dan r adalah bilangan real Langkah-langkah menyelesaikan SPK Substitusikan persamaan yang satu ke persamaan yang lainnya sehingga terbentuk persamaan kuadrat Tentukan akar-akar persamaan kuadrat yang terbentuk sehingga diperoleh himpunan penyelesaian {x1,y1,x2,y2} Himpunan penyelesaian sistem persamaan kuadrat memiliki 6 kemungkinan, yaitu Jika D > 0, maka kedua parabola berpotongan di dua titik yang merupakan himpunan penyelesaiannya. Jika D = 0, maka kedua parabola berpotongan di satu titik yang merupakan himpunan penyelesaiannya Jika D 2x2 -8 = 0 x2 - 4 = 0 x - 2x + 2 = 0 x = 2 atau x = -2 Untuk x = 2 y = x2 - 2x - 3 y = 22 -2 2 - 3 y = 4 - 4 - 3 y = -3 Untuk x = -2 y = x2 - 2x - 3 y = -22 -2 -2 - 3 y = 4 + 4 - 3 y = 5 Jadi, himpunan penyelesaiannya adalah {-2,5,2,-3} -> Jawaban C
soal dan pembahasan sistem persamaan linear dan kuadrat dua variabel